
Sorting Algorithms 
Part 2

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Programming
• More live coding (maybe less theory time)

• Schedule fixed practice for most important skills

• 30mins/day competent habit, 1hr+ competitive

• I used to sit with flatmates semi-watching TV with the laptop

• Code all the elementary sorts

• Ask questions / discuss / ask for help / feedback

• Join DUCSS and Netsoc - they have some good talks/
workshops

Previously…
• Charts for visualising sorting happening

• Terms: file, record, key, stable, indirect sort

• Selection sort - select smallest item from unsorted
part (right) of array into current position

• Insertion sort - insert next item into correct position
inside sorted part (left) of array (pickup pile and
hand of sorted cards)

Bubble Sort Algorithm
• sorted = false

• while (sorted == false)

• sorted = true

• loop over data

• if (next < current)

• swap(current, next)

• sorted = false

Bubble Sort
• Time and space complexity? Worst, average, best?

• Advantages:

• Code is simple

• Can stop early if numbers already sorted

• No other sorting algorithm does this

• Can do one run to check before calling complex sorting algorithm

• "Stable"

• *Sedgewick has a different implementation of Bubble Sort

• Computer scientists have very negative things to say about Bubble Sort's worst
case performance vs Insertion Sort.

Summary - Elementary
Sorting Algorithms

• Very simple to implement. Also interchangeable. Some useful
properties.

• O(n^2) worst case time

• May not play well with cache - try them with a timer

• O(1) auxiliary memory (1 variable for swapping)

• Stable

• Code all of these yourself as exercise

merge() 2 sorted lists
• I have 2 sorted files (or arrays) A and B - merge them into a new

output array

• Create 3 iterators (counters), one per array

• int a_index = 0, b_index = 0,  
output_index = 0;

• Compare the value at each index, find the smallest

• copy value to a new array

• increment counter of the list you copied from

• Add any left-overs from A and B to output

Working Down the Page
 List A List B Output List could track counters too 
 
3 4 12 | 1 10 23

3 4 12 | 1 10 23 : 1

3 4 12 | 1 10 23 : 1, 3

3 4 12 | 1 10 23 : 1, 3, 4

… … : …

 : 1, 3, 4, 10, 12, 23

Merging

• Fairly simple

• O(N)

• Requires auxiliary memory - how much?

• Should I code this now? Might take a while - error
prone.

Merge Sort Algorithm

1. Cut array of keys in half

2. Sort left half (recursively)

3. Sort right half (recursively)

4. Merge the two sorted lists

Merge Sort
• Merging two sorted lists is O(n)

• Bisecting the sort space is O(log(n))

• So the whole sort is O(n * log(n))

• Faster than our O(n^2) elementary sorting algorithms

• More complex to implement

• Auxiliary memory use? O(…)

coding merge() for
merge_sort()

• took me over an hour to code correctly

• always print output and know what result should be

• made lots of mistakes and had to use the debugger

• mixing up index variables

• using < instead of <=

• had to create a temp array inside merge() to avoid overwriting original
data

• simplified my code after looking at others' code

• replacing recursion with loops would be better still

If we have time..

• Coding merge() and merge_sort() — might take too
long for lecture - maybe in tutorial?

• One I prepared earlier follows (and link to GitHub in
Discussion Board)

• Next: Quicksort, sorting and coding exercise, 2nd
lab for assignment.

// first and last are the range of the output list, inclusive
// first half is left list, second half of this is the right list
void merge(int first, int last, int *array) {
 // make a temporary working array so we don't overwrite our data
 // as we are reading it
 // alloca is dynamic _stack_ memory - freed at function close
 // you could do this with another sort of array or memory
 int* result = alloca(sizeof(int) * (last - first));

 int mid_index = (first + last) / 2;
 int left_index = first, right_index = mid_index + 1, output_index = first;

 // compare the lists until one list runs out of list
 while (left_index <= mid_index && right_index <= last) {
 if (array[left_index] < array[right_index]) {
 result[output_index++] = array[left_index++];
 } else {
 result[output_index++] = array[right_index++];
 }
 }

 // copy any leftovers from either list into output
 // you can probably simplify these into the other loop
 // if you're smarter than me
 while (left_index <= mid_index) {
 result[output_index++] = array[left_index++];
 }
 while (right_index <= last) {
 result[output_index++] = array[right_index++];
 }

 // copy into original array
 for (int i = first; i <= last; i++) {
 array[i] = result[i];
 }
}

// declare here so i can recursively call self
void merge_sort(int first_index, int last_index, int* data);

void merge_sort(int first_index, int last_index, int* data) {
 // break recursion when counters meet in the middle
 if (first_index >= last_index) {
 return;
 }
 int mid_index = (first_index + last_index) / 2;

 // NB: replacing recursion with loops is usually more efficient
 merge_sort(first_index, mid_index, data);
 merge_sort(mid_index + 1, last_index, data);
 merge(first_index, last_index, data);
}

int main() {
 // create 2 input lists and space for one output list
 int data[] = { 3, 4, 12, 1, 10, 23 }; // initialiser list for array
giving constant values

 // sort with bisections, recursively, from indices 0 to 5, inclusive
 merge_sort(0, 5, data);

 for (int i = 0; i < 6; i++) {
 printf("%i ", data[i]);
 }
 printf("\n");

 return 0;
}

