Sorting Algorithms
Part 2

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Programming

* More live coding (maybe less theory time)
e Schedule fixed practice for most important skills
e 30mins/day competent habit, 1Thr+ competitive
e | used to sit with flatmates semi-watching TV with the laptop
o Code all the elementary sorts
* Ask questions / discuss / ask for help / feedback

« Join DUCSS and Netsoc - they have some good talks/
WOrkshops

Previously...

Charts for visualising sorting happening
Terms: file, record, key, stable, indirect sort

Selection sort - select smallest item from unsorted
part (right) of array into current position

nsertion sort - insert next item into correct position
inside sorted part (left) of array (pickup pile and
nand of sorted cards)

Bubble Sort Algorithm

e sorted = false

* while (sorted == false)

* sorted = true
* |loop over data
e if (next < current)
* swap(current, next)

e sorted = false

Bubble Sort

* Time and space complexity”? Worst, average, best?
e Advantages:
« Code is simple
e Can stop early if numbers already sorted
* No other sorting algorithm does this
e Can do one run to check before calling complex sorting algorithm
« 'Stable’
e *Sedgewick has a different implementation of Bubble Sort

o Computer scientists have very negative things to say about Bubble Sort's worst
case performance vs Insertion Sort.

Summary - Elementary
Sorting Algorithms

Very simple to implement. Also interchangeable. Some useful
properties.

O(nA2) worst case time
 May not play well with cache - try them with a timer
O(1) auxiliary memory (1 variable for swapping)

Stable

Code all of these yourself as exercise

merge() 2 sorted lists

| have 2 sorted files (or arrays) A and B - merge them into a new
output array

Create 3 iterators (counters), one per array

e Int a i1ndex = 0,
output i1ndex = 0;

b 1ndex = 0,
Compare the value at each index, find the smallest
e copy value to a new array

e increment counter of the list you copied from

Add any left-overs from A and B to output

Working Down the Page

List A List B

3412 |1 10 23

3412|110 23 -

3412|110 23

3412|110 23

Qutput List could track counters too

1, 3

1, 3,4

1,3, 4,10, 12, 23

Merging

Fairly simple
O(N)
Requires auxiliary memory - how much?

Should | code this now? Might take a while - error
prone.

Merge Sort Algorithm

1. Cut array of keys in half
2. Sort left half (recursively)
3. Sort right half (recursively)

4. Merge the two sorted lists

Merge Sort

Merging two sorted lists is O(n)

Bisecting the sort space is O(log(n))

So the whole sort is O(n * log(n))

Faster than our O(nA2) elementary sorting algorithms
More complex to iImplement

Auxiliary memory use”? O(...)

coding merge() for
merge_sort()

took me over an hour to code correctly

e always print output and know what result should be
made lots of mistakes and had to use the debugger

* Mixing up index variables

e using < instead of <=

e had to create a temp array inside merge () to avoid overwriting original
data

simplified my code after looking at others' code

replacing recursion with loops would be better still

[T we have time..

* Coding merge() and merge_sort() — might take too
long for lecture - maybe in tutorial”?

 One | prepared earlier follows (and link to GitHub in
Discussion Board)

* Next: Quicksort, sorting and coding exercise, 2nd
lab for assignment.

// Tirst and last are the range of the output list, inclusive
// first half is left list, second half of this is the right 1list
void merge(int first, int last, int xarray) {
// make a temporary working array so we don't overwrite our data
// as we are reading it
// alloca is dynamic _stack_ memory - freed at function close
// you could do this with another sort of array or memory
intx result = alloca(sizeof(int) % (last - first));

int mid_index = (first + last) / 2;
int left_index = first, right_index = mid_index + 1, output_index = first;

// compare the lists until one list runs out of list
while (left_index <= mid_index && right_index <= last) {
if (arrayl[left_index] < arraylright_index]) {
result[output_index++] = array[left_index++];
} else {
result[output_index++] = arrayl[right_index++];
¥

}

// copy any leftovers from either list into output

// you can probably simplify these into the other loop

// 1if you're smarter than me

while (left_index <= mid_index) {
result[output_index++] = array[left_index++];

Iy

while (right_index <= last) {
result[output_index++] = arraylright_index++];
Iy

// copy into original array

for (int i = first; i <= last; i++) {
arrayl[i]l = resultl[il;

5

// declare here so 1 can recursively call self
void merge_sort(int first_index, int last_index, intx data);

void merge_sort(int first_index, int last_index, intx data) {
// break recursion when counters meet in the middle
if (first_index >= last_index) {
return;
¥

int mid_index = (first_index + last_index) / 2;

// NB: replacing recursion with loops 1s usually more efficient
merge_sort(first_index, mid_index, data);

merge_sort(mid_index + 1, last_index, data);

merge(first_index, last_index, data);

}

int main() {

// create 2 input lists and space for one output list

int datall = { 3, 4, 12, 1, 10, 23 }; // initialiser list for array
giving constant values

// sort with bisections, recursively, from indices @ to 5, inclusive
merge_sort(0, 5, data);

for (int 1 = 0; 1 < 6; i++) {
printf("%i ", datalil);
}

printf("\n");

return 0;

